• Home
  • Elimination of Gear Backlash in CNC Machining Feed System

Elimination of Gear Backlash in CNC Machining Feed System

Elimination of Gear Backlash in CNC Machining Feed System

 

The transmission gear in the feed system of the CNC machining machine tool must eliminate the transmission gap between the meshing gears as much as possible, otherwise the motion will lag behind the command signal after each reversal of the feed system, which will affect the machining accuracy (accuracy) ). There are the following two common methods for CNC machining machine tools to eliminate the transmission gear gap.

 

1. Rigidity adjustment method

 

The rigid adjustment method is an adjustment method that cannot be automatically compensated for the tooth side clearance after adjustment. Therefore, the pitch tolerance and tooth thickness of the gear must be strictly controlled, otherwise the flexibility of the transmission will be affected. This adjustment method has a relatively simple structure and a better transmission rigidity.

 

(1) Eccentric shaft adjustment method

 

As shown in Figure 610, the gear 1 is mounted on the eccentric sleeve 2. Adjusting the eccentric sleeve 2 can change the center distance between the gear 1 and the gear 3, thereby eliminating the gap. In the numerical control processing, the control system issues instructions to make the tool perform various motions that meet the requirements, and the shape and size of the workpiece are expressed in the form of numbers and letters, and the processing required by the processing technology. It generally refers to the process of processing parts on CNC machine tools. In order to improve the degree of production automation, shorten the programming time and reduce the cost of CNC machining, a series of advanced CNC machining c17500 beryllium copper technologies have been developed and used in the aerospace industry.

 

(2) Axial gasket adjustment method

 

For a pair of meshing cylindrical gears, if their pitch circle diameter is made into a smaller taper along the gear axial direction, changing the thickness of the gasket 3 can change the axial relative position of the gear 2 and the gear 1, thereby eliminating the tooth flanks. gap. In the numerical control processing, the control system issues instructions to make the tool perform various motions that meet the requirements, and the shape and size of the workpiece are expressed in the form of numbers and letters, and the processing required by the processing technology. It generally refers to the process of processing parts on CNC machine tools. In order to improve the degree of production automation, shorten the programming time and reduce the cost of CNC machining c11000 copper, a series of advanced CNC machining technologies have been developed and used in the aerospace industry.

 

Add a shim 2 between the two thin helical gears 3 and 4, change the thickness t of the shim, and the helix of the thin gears 3 and 4 will be misaligned, so that the thin gears 3 and 4 are respectively aligned with the teeth of the wide helical gear 1. The left and right sides of the groove are tightly attached to each other, thereby eliminating the tooth side clearance.

 

2. Flexible adjustment method

 

The flexible adjustment method is an adjustment method in which the tooth flank gap can still be automatically compensated after adjustment. This method generally adopts adjusting the pressure of the pressure spring (Spring) to eliminate the tooth side clearance, and in the case of changes in the tooth thickness and circumferential section of the gear, it can also maintain a gapless meshing, but the structure of this adjustment method is relatively more. Complex, large axial size, low transmission rigidity, and poor transmission stability.

 

(1) Axial compression spring adjustment method

 

The two thin helical gears 1 and 2 are sleeved on the shaft 6 with the key 4, and the nut 5 is used to adjust the axial pressure of the pressure spring 3. The left and right tooth surfaces of the groove are tightly attached to each other, thereby eliminating the tooth side clearance. The spring force needs to be adjusted properly, too loose can not eliminate the gap, too tight will accelerate the wear of the gear (a basic type of component failure).

 

(2) Circumferential spring adjustment method

 

Two thin gears 1 and 2 with the same number of teeth mesh with another wide gear, and the gear 1 is idler on the gear 2 and can rotate relatively. CNC machining General CNC machining c17300 beryllium copper usually refers to computer digital control precision machining, CNC machining lathe, CNC machining milling machine, CNC machining boring and milling machine, etc. The feed route of finishing is basically carried out along the part contour sequence. Therefore, the focus of determining the feed route is to determine the feed route of rough machining and idle stroke. The end face of each gear is evenly equipped with four threaded lugs 3 and 8 respectively. There are four through holes on the end face of the gear 1 through which the lug 8 can pass. The spring 4 is hooked on the adjusting screw 7 and 9 lug 3 respectively. . Turning the nuts 5 and 6 can adjust the tension of the spring 4. The tension of the spring displaces the sheet gears 1 and 2 with each other, and respectively adhere to the left and right tooth surfaces of the wide gear grooves to eliminate the tooth side clearance.

Copyright notice: This article comes from https://be-cu.com/

 

Post a Comment

Note: Only a member of this blog may post a comment.

Recent News

[latest][5][recentright]

PTJ RFQ

What Is PTJ?
PTJ adopts flexible manufacturing methods to help our customers to control the product cost but best quality guranteed. Some frequently used machining processes include CNC milling, CNC turning, precision grinding, EDM machining, laser cutting, welding, CNC punching, sheet metal stamping, profile extrusion, die casting, forging, and more. Most of the custom precision cnc machining china parts and plastic machining components we made are related to automation machines, robotics, medical devices, fiber optics, aerospace/aircraft, test and measurement, sensors, telecom components, scientific devices, audio equipments, bicycles, boats, camera, cars, drones, electronic enclosures, front panels, furniture and architecture hardware, lighting, motorcycles, scooters, utv, jeeps, trucks, sports equipments, machinery, music instruments, and so on.
For Surface Finishes
Thanks to our mature supplier management and continuously experience accumulation. Now we have very stable surface finish suppliers to assist us to do different surface finishes with stable and excellent quality. Some Frequently used surface finishes are Anodizing, Oxide, Nickel Plating, Chrome Plating, Gold / Silver Plating, Powder Coating, Zinc Plating, PVD Coating, Passivation, Heat Treatment, Electrochemical machining, Brushing, Polishing, Sandblasting, etc.
General Tolerance of Equipments
1. CNC Milling tolerance: +/-0.01mm
2. CNC turning tolerance: +/-0.01mm
3. Precision grinding tolerance: +/-0.005mm
4. EDM machining tolerance: +/-0.005mm
How to Control Quality?
1. Inspection by machinist himself who is responsible for a specific part machining.
2. First article part inspection by QA.
3. IPQC patrol inspection during production.
4. PQC inspection before shipping according to ISO9001 sampling inspection standard for large quantity production. And for small quantity, 100% full inspection.
5. Material Certificates and outgoing inspection reports could be provided.
Our CNC machine and swiss machining shop sets full and advanced inspection instruments such as CMM, projector, height instrument, industrial microscope, micrometer, calipers, thread gauges, pin gauges, block gauges, etc. so as to inspect all details on drawings and confirm quality is good and issue the ourgoing reports accordingly.
How to Start Working with Our Company?
1) Sending detailed RFQ with 2D and 3D drawings to through email to info@pintejin.com. General drawing formats like PDF/ STEP/IGES/X_T etc are accepted.
2) We check and confirm about materials, surface finish and quantiy, and evaluate. If any question, our sales engineer would double check with customers until everything is clear. We will quote accordingly if we are ok to make the parts with best quality. If no question and everything is clear, we send quotation with best prices within 24 hours. Our sales engineer team is online for 7/24 for offering customers the best cnc machining services.
3) We recommend to start from few pcs prototypes for approval at the beginning. If nothing wrong after customer’s test and approval, then we proceed to volume cnc manufacturing.
Some Tips for Customers
a. We accept Paypal payment of small amount payment for samples or small batch orders for building mutual trust at the beginning. General payment terms is 30% by wire transfer, and balance before shipping.
b. Delivery time for few pcs samples are generally 5 to 7 days, and 15 to 25 days for volume production. If the order quantity was too big, we would check and confirm delivery time sepertely.
c. Our company has concrete promise to all customers that if any quality problem caused by our factory, we would remake all parts for free or send money back.
Safe Packing Methods to Prevent Goods from Damage during Transportation
Due to long distance transportation to overseas countries, safe and strong packing is very important to gurantee the parts to be in good conditions when arriving at customer’s hand. We choose different packing materials according to different parts and quantity. Some commonly used packing materials are pp/bubble bag, oil paper, foam, blister tray, 5 layer carton, wood box, etc. See below some packing pictures.